Characterization of the third SERK gene in pineapple (Ananas comosus) and analysis of its expression and autophosphorylation activity in vitro
نویسندگان
چکیده
Two somatic embryogenesis receptor-like kinase genes (identified as AcSERK1 and AcSERK2) have previously been characterized from pineapple (Ananas comosus). In this work, we describe the characterization of a third gene (AcSERK3) in this family. AcSERK3 had all the characteristic domains and shared extensive sequence homology with other plant SERKs. AcSERK3 expression was studied by in situ hybridization and quantitative real-time PCR to analyze its function. Intense in situ hybridization signals were observed only in single competent cells and competent cell clusters; no hybridization signal was detected in the subsequent stages of somatic embryogenesis. AcSERK3 was highly expressed in embryogenic callus compared to other organs, e.g., 20-80 fold more than in anther but similar to that of non-embryogenic callus, which was 20-50 fold that of anther. AcSERK3 expression in root was 80 fold higher than in anther and the highest amongst all organs tested. These results indicate that AcSERK3 plays an important role in callus proliferation and root development. His-tagged AcSERK3 protein was successfully expressed and the luminescence of His6-AcSERK3 protein was only ∼5% of that of inactivated AcSERK3 protein and reaction buffer without protein, and 11.3% of that of an extract of host Escherichia coli pET-30a. This finding confirmed that the AcSERK3 fusion protein had autophosphorylation activity.
منابع مشابه
An Efficient and Cost Effective Protocol for In Vitro Propagation of Pineapple
An efficient and cost effective protocol for in vitro propagation of Pineapple (Ananas comosus var. Queen) has been developed. In the proliferation stage, agar based Murashige and Skoog (MS) media was supplemented with 3.0 mg/l benzyleaminopurine (BAP), 0.5 mg/l indole acetic acid (IAA) and 50 mg/l adenine sulphate as RBC design experiment. Two approaches were taken to reduce the chemical cost ...
متن کاملTranscriptome Sequence Analysis of an Ornamental Plant, Ananas comosus var. bracteatus, Revealed the Potential Unigenes Involved in Terpenoid and Phenylpropanoid Biosynthesis
BACKGROUND Ananas comosus var. bracteatus (Red Pineapple) is an important ornamental plant for its colorful leaves and decorative red fruits. Because of its complex genome, it is difficult to understand the molecular mechanisms involved in the growth and development. Thus high-throughput transcriptome sequencing of Ananas comosus var. bracteatus is necessary to generate large quantities of tran...
متن کاملEffects of Non-Thermal Processing Methods on Physicochemical, Bioactive, and Microbiological Properties of Fresh Pineapple (Ananas comosus L. Merr.) Juice
Background: Pineapple juice processing is an art of preservation, and the processing technologies play important role in pineapple juice quality. Therefore, this study aimed to explore the potential impacts of non-thermal processing methods on the physicochemical, bioactive, and microbiological properties of fresh pineapple juice. Methods: Extracted juices were subjected to several non-thermal...
متن کاملGenome-Wide Identification and Expression Profiling of ATP-Binding Cassette (ABC) Transporter Gene Family in Pineapple (Ananas comosus (L.) Merr.) Reveal the Role of AcABCG38 in Pollen Development
Pineapple (Ananas comosus L.) cultivation commonly relies on asexual reproduction which is easily impeded by many factors in agriculture production. Sexual reproduction might be a novel approach to improve the pineapple planting. However, genes controlling pineapple sexual reproduction are still remain elusive. In different organisms a conserved superfamily proteins known as ATP binding cassett...
متن کاملDe Novo Assembly, Characterization and Functional Annotation of Pineapple Fruit Transcriptome through Massively Parallel Sequencing
BACKGROUND Pineapple (Ananas comosus var. comosus), is an important tropical non-climacteric fruit with high commercial potential. Understanding the mechanism and processes underlying fruit ripening would enable scientists to enhance the improvement of quality traits such as, flavor, texture, appearance and fruit sweetness. Although, the pineapple is an important fruit, there is insufficient tr...
متن کامل